inspections

When is a Backflow Pit a Permit-Required Confined Space?

A confined space is a space that is large enough and arranged so that an employee can physically enter, but has limited or restricted means for entry and exit, and is not designed for continuous occupancy. If a confined space contains serious hazards, then OSHA defines it has a permit-required confined space. Permit-required confined spaces must be identified and accessed with additional caution to protect workers lives.

A permit-required confined space has a configuration, or contents, that may present special dangers not found in normal work areas. These spaces may be poorly ventilated and, as a result, contain insufficient oxygen or hazardous levels of toxic gases. They may also present hazards to workers by not allowing them to keep a safe distance from mechanical and electrical hazards present in the space. Fumes from a flammable liquid that is used in a poorly ventilated area, can reach explosive levels in a permit-required confined space. Such hazards endanger both the workers in the space and any others who become exposed to the hazards when they attempt to rescue injured or trapped workers. Rescue workers have been injured or killed in a confined space because they did not have the proper training or equipment necessary to conduct a rescue safely.

In addition to the two workers (entrant and attendant), who are required for any confined space entry, to enter a permit-required confined space the workers also need additional equipment for safety. This includes any equipment that may be required for a worker rescue in the event a worker is stranded within the confined space. Required equipment includes atmospheric monitors, fall protection and extraction equipment, tripod, harness, and self-contained breathing apparatus.

To determine if your Backflow Pit is a permit-required confined space, you must evaluate the Backflow Pit to determine whether hazards exist or whether the work to be done in the space can create hazards. If the Backflow Pit contains an actual or potential hazard that can cause death, injury or acute illness, incapacitation, entrapment, or otherwise interfere with a worker’s ability to leave the space in an emergency, then it is a permit-required confined space.

Confined space entry and precautions for working in them is overseen by OSHA. OSHA defines a permit-required confined space as a space that has one or more of the following characteristics: contains or has the potential to contain a hazardous atmosphere; contains material that has the potential to engulf an entrant; has walls that converge inward or floors that slope downward and taper into a smaller area which could trap or asphyxiate an entrant; or contains any other recognized safety or health hazard, such as unguarded machinery, exposed live wires, or heat stress.

Once you have determined if your Backflow Pit is a permit-required confined space, adequate precautions must be taken to prevent loss of life or injury for the workers who enter the space.

A1 is a leading expert on the latest technology in life safety. To find out more information or to ask a question, click here or call us at 1-800-859-6198.

Nick Duke
Nick Duke

Smoke Detector Sensitivity Testing

Your fire safety system depends on the accurate detection of smoke by your smoke detectors. In order to ensure your smoke detectors are working properly, and able to protect your people and assets, you must have sensitivity testing completed on a regular basis.

Smoke detectors are designed to function effectively within a specific range of sensitivity to smoke. This range is set by the manufacturer and the devices are required by NFPA to be tested regularly to ensure they remain within it. If a smoke detector is not as sensitive as it should be, then it may not react as quickly as it should to a fire. However, if the smoke detector is too sensitive, then you could have recurring nuisance alarms.

There are several options for performing sensitivity tests on smoke detectors. Sensitivity tests can be conducted by a recognized, calibrated test method with smoke or listed aerosol, or with equipment specifically designed for calibrating sensitivity in smoke detectors. There are listed control equipment arranged to perform sensitivity ranges and calibrated sensitivity test instruments designed by the smoke detector manufacturers. You can also use a combination smoke detector/control unit where the detector causes a signal at the control panel unit when its sensitivity is outside its listed sensitivity ranges.

During sensitivity testing, if a detector fails, it will need to be cleaned and retested. Cleaning smoke detectors should be left to your Life Safety Partner, as they will clean the smoke detector screen and chamber using a non-electrostatic vacuum specifically designed to prevent damage to the detector. After cleaning, the detector will be retested, if it fails again then it needs to be removed from service.

Sensitivity testing must be completed within one year of installation and every other year after that. After the second test, if the detector is within its listed sensitivity range for two consecutive tests, then the next sensitivity test is required in five years.

A1 is a leading expert on the latest technology in life safety. To find out more information or to ask a question, click here or call us at 1-800-859-6198.

Nick Duke
Nick Duke

Using a Life Safety Inspection Report

Your Life Safety Inspection report should be more than just a listing on what was inspected. This report can be a valuable document for you for record keeping, budgeting and planning, and preparing for your own inspections from your AHJ, insurance company or accreditation inspector.

 

What can you learn from your Life Safety inspection report?

 

  1. If any devices failed and why

Your Life Safety inspection report should list all devices that have been tested and inspected. You should easily be able to see any devices that failed and an explanation of why. If you have failed devices, you will need to get corrections made in order to stay compliant with NFPA and life safety standards.

  1. Request repairs from your report, and see notations for items that have been corrected since the inspection

If you have failed devices, you should be able to request a quote for repairs directly from your online report. Once repairs are complete, you can come back to your Life Safety inspection report and see notations on repaired devices. Your reports will be maintained by your Life Safety Partner, providing you with records of your Life Safety device repairs.

  1. Fire extinguisher testing schedule

Your inspection report should list out each fire extinguisher in your facility and when the next 6- or 12-year test is due for each. This information allows you to plan your budget for fire extinguisher maintenance. Of course, if you have a fire extinguisher maintenance plan, then your 6 year maintenance and recharge and 12-year hydrostatic tests and recharge are included and will not cost you anything additional.

  1. Print the full report for your AHJ, insurance or accreditation inspector.

Your Life Safety inspection report will have technical information on your systems. When you have a visit from your AHJ, insurance company, or accreditation inspector, print your full Life Safety inspection report. The technical information in your report will be used by your inspector to ensure compliance with codes, insurance regulations, or regulations with your accrediting agency.

For a complete list of what inspections are required for each system, visit A1’s inspections page, or check out our comprehensive Inspections Ebook.

If your Life Safety inspection report does not provide you with this information, speak to your Life Safety Partner about what you need or call A1. A1 is a leading expert on the latest technology in life safety. To find out more information or to ask a question, click here or call us at 1-800-859-6198.

Nick Duke
Nick Duke
A1 Inspections Supervisor

Drum Drip Maintenance

What are Drum Drips?

Drum drips are drains on dry sprinkler systems, which are used to empty the dry sprinkler pipe of any water that has collected due to condensation or water draining within the system. Since dry pipe systems are utilized in areas where water may freeze, it is important to regularly remove any condensed water to prevent freezing and damage to the pipes.

Drum drips can also be called auxiliary drains, drip legs, and condensate drains. No matter what they are called, a drum drip consists of two, 1-inch valves with a short section of two-inch pipe between them. These are normally located at the lower points of the system or where piping elevation changes may occur.

Locating and Labeling Drum Drips

Systems may have multiple drum drips and it is important that each be drained on a regular basis to prevent costly damage from freezing water. NFPA standards require that drum drips within buildings be identified so that they are easier to maintain. You must also have an informational sign at the system’s control riser that includes the location of all drum drips.

When to Perform Drum Drip Maintenance

All drum drips should be operated weekly during the fall and winter months, even if no water is found on a regular basis. When preparing for cold weather, you should operate the drum drips daily and may decrease the operation based on the amount of water discharged.

After a dry sprinkler system operation, you should perform drum drip maintenance on a daily basis until several days pass with no discharge of water from the drain valve. At that time, you can decrease the frequency to weekly or longer intervals depending on the volume of water discharged.

In many cases, frequency of drum drip maintenance can decrease if the system is shown to be dry.

How to Perform Drum Drip Maintenance

  1. Locate all drum drips throughout the property.
  2. If a quick opening device is installed, temporarily remove it from service.
  3. At the drum drip, ensure both valves on the drum drip are closed.
  4. To catch any water that may discharge from the drum drip, place a container underneath the bottom valve. For interior locations, remove the plug from the bottom valve. (Exterior locations may not have a plug.)
  5. Slowly open the top valve to full open position and maintain this position for 10 seconds.
  6. Close the top valve. **You should never open both the top and bottom valve at the same time as this may activate your system.**
  7. Slowly open the bottom valve to discharge any water. If you cannot see the discharge point, allow water to drain for 10 seconds.
  8. Close the bottom valve.
  9. If water discharged when you opened the bottom valve, repeat steps 5 through 8 until no water appears when you open the bottom valve. This will ensure you have removed all water from the system.
  10. When the system has been completely drained, meaning no water appears when the bottom valve is opened, close the bottom valve. Then slowly open the top valve and, if applicable, replace the plug. This will return the drum drip to service.
  11. If you removed a quick opening device from service before beginning drum drip maintenance, re-install it at this time.

If your drum drip discharges to a location you cannot see, you can use a second person to watch the drain and notify you when there is no more water draining from the system. Another option to identify when all water has been removed from the system is to place a bucket under the drain and empty the bucket after each discharge.

If you are discharging water without using a bucket to collect it, be sure the water will not cause a safety hazard in traffic areas, or damage any surrounding areas or equipment.

Need more help? Check out A1’s video on how to perform drum drip maintenance.

A1 is a leading expert on the latest technology in life safety. To find out more information or to ask a question, click here or call us at 1-800-859-6198.

Mike Rossman

Replacing Batteries in your Exit Lights

Exit lights serve an important purpose – in the event of an emergency they light the way to safety. While exit lights are connected to a power source, they rely on battery operation during an emergency when the power may go out.

Batteries are one of the top reasons exit lights fail (check out the top 4 Exit Light Failures). Batteries in exit lights maintain their charge from the electrical power connection.  Even rechargeable batteries will eventually stop working though, and batteries in exit lights need to be replaced every 2 years to ensure continued operation.

You won’t be able to tell that your batteries have died in the exit light, as we discussed, during normal operations the light functions from the electrical connection, not batteries. If you do not change your batteries on a regular basis you may be allowing your dead batteries to sit in the light which can cause additional problem. Old batteries can leak acid which will damage the exit light.

The charging unit in an exit light has the job of recharging the batteries, ensuring they are fully charged in the event of a power outage. If your batteries are dead, your exit light’s charging unit will continue to send that charge, working overtime trying to charge dead or dying batteries. Eventually, this will cause the charging unit to burn out. The required annual inspection will find this problem, and you will need to replace the exit light.

Not being proactive in changing batteries though means you are gambling that an inspection will occur before an emergency when the lights are needed to be in working order. Also, a charging unit that is overworked trying to charge dead batteries can be a fire hazard, so it is important to be proactive in changing your exit light batteries to prevent this hazard.

A1 recommends that you change your exit light batteries every 2 years as a preventive measure for outages and additional problems. Learn how to do your own monthly, visual inspection of exit lights here. This is required by OSHA and the NFPA Life Safety Code, and can help you to identify dead batteries or other issues that need to be addressed with your exit lights. A complete inspection and test of your exit lights must be performed annually by Your Life Safety Partner.

Will Buchholz

Time to replace your smoke alarm

Working smoke detectors or smoke alarms greatly decrease the risk of injury or death in a fire. Like any Life Safety device, smoke detectors and alarms need to be inspected, tested and replaced on a regular schedule to ensure they work effectively.

Smoke Alarms and Smoke Detectors

As we discussed in our blog Smoke Alarms, there is a difference between a smoke alarm and a smoke detector. A smoke alarm is a stand-alone device with a built-in sounder, a power supply, and a sensor. A smoke alarm is not connected to a fire alarm control panel, but may interconnect with other smoke alarms within the building. A smoke detector is part of a commercial fire protection system, it has only a built-in sensor and sends information to the fire alarm panel.

Technology Lifespan

However, the sensing technology within smoke alarms and smoke detectors are the same – primarily, photoelectric smoke detection. This sensing system can become less responsive as it ages. To ensure your people and assets are protected, you should replace all smoke detectors and smoke alarms when they are 10 years old. To determine the age of your alarm/detector, look at the back where you will find the date of manufacture.

Inspections

You should test your smoke alarms once a month by pushing the test button. Twice a year you should replace the batteries in all of your smoke alarms, it is encouraged that you do this when your clocks change for daylight savings as it serves as a regular reminder. You can clean your smoke alarms by vacuuming the outside, do not remove the alarm’s cover to vacuum.

Smoke detectors will be professionally inspected on an annual basis when your fire alarm system is inspected and tested. Your Life Safety Partner will check for the proper signal reception from the detectors at the alarm panel, clean your smoke detectors, and, when required, perform a sensitivity test.

A1 is a leading expert on the latest technology in life safety. To find out more information or to ask a question, click here or call us at 1-800-859-6198.

Jack Menke
Jack Menke

Why have your sprinkler gauges checked?

The importance of pressure gauges on a fire sprinkler system can sometimes be overlooked. It is a common misconception that if a pressure gauge is registering pressure then it is operating properly. We must first take a look at what these gauges are and how they are used in order to completely understand their importance as a part of your sprinkler system.

Types of Pressure Gauges: Dry and Liquid Filled

Pressure gauges for a fire sprinkler system come in two basic types: dry and liquid filled. The dry gauge is most common; it consists of a numbered dial with an indicating needle that is attached to a spring loaded mechanism. This spring is compressed by pressure from the system, causing the needle to rise in relation to the amount of pressure. Liquid filled gauges operate under the same principle but are completely filled with liquid, usually glycerin. The liquid does a couple things, it lubricates and protects components in the gauge from wear and corrosion, while at the same time it dampens vibration and small spikes or jumps of the needle as pressures change. This creates a more sensitive precise gauge. For that reason, these gauges, which are higher in price, are usually used on testing or other more demanding applications.

Selecting the Correct Gaugegauge

Gauges can be manufactured for a specific application, such as fire pump readings and high pressure systems, or for a specific pressure type such as water pressure, air pressure, or a combination. Choosing the proper gauge for the application should be done by a trained Life Safety professional, as not just any gauge may be installed. NFPA 13 requires the gauge be approved for the application as well as have UL and FM approval. Your Life Safety Partner will also have the expertise needed to determine gauge location and correct installation procedures. Gauges are typically installed on ¼”, 3-way valves to allow easy replacement without taking the system out of service since fire sprinkler systems should always be functioning.

Gauge use in a Fire Sprinkler System

Fire sprinkler systems are always on, active, and supplied by an automatic water supply. Gauges help us ensure that the system is active, in service, and proper water supply and pressure is available. Located at various points in the system, they give us an indication of what the system status is and if anything has changed that may affect performance. Water pressure gauges at the control risers indicate the system is active and supplied by water pressure. This “resting active” pressure is known as static pressure. When the main drain on the system is opened completely, a water flowing pressure reading can be taken here which is known as a residual pressure. Your Life Safety Partner will track these readings during annual inspections, a change in this residual pressure can give warning to changes in the water supply or supply piping system. Gauges monitoring air pressure on dry systems are important for setting the correct air to water pressures on dry gaugesvalves and recording trip pressures. A system air pressure that is too high could result in delayed trip times, too little could cause false trips. Gauges are used too monitor pressures on standpipes, fire pump performance, and many other functions.


Inspection and Maintenance

As with any other critical component of a sprinkler system, gauges must be tested, inspected and maintained. Gauges are used in almost every stage of system testing. Quarterly, semi-annual and annual inspections all include testing that involves gauges. NFPA requires a monthly visual inspection of gauges noting any damage, leakage, or unusual readings. The date of the gauge should also be noted in inspections, as NFPA requires all gauges to be tested or replaced every 5 years. When gauges are tested, they must fall within a +/- 3% accuracy range or they have to be re-calibrated. Because the cost of new gauges is relatively low, it is common to have the gauges replaced rather than paying for the testing and re-calibrating.

A1 is a leading expert on the latest technology in life safety. To find out more information or to ask a question, click here or call us at 1-800-859-6198.

Greg Lane

 

Fire Sprinkler Inspections

Fire Sprinkler inspections are an important step in your Life Safety program.

Sprinklers are very reliable and can last as long as the building in which they are installed. As with any other mechanical system, sprinkler systems and its external components each have their own design, inspection, and maintenance requirements. As you would expect, there is a long list of inspections and tests required. Weekly, monthly, quarterly, and annual tests of items such as bearings, couplings, coolant, fuel, batteries, oil, gauges, etc. are just a small sampling. In addition, the different systems must be run tested periodically to ensure functionality.

Sprinkler inspections differ somewhat based on what type of system you have, but all systems must have professional inspections quarterly, semi-annually, and annually. Fire sprinkler systems are comprised of piping, sensory parts, sprinkler heads, pumps, valves, gauges, and many other parts that work together in order to provide fire protection. If any one of these parts has a problem, it can cause your system to work less efficiently or become inoperable. Regular maintenance and inspections of the equipment will not only ensure everything is working and ready if needed it will also help eliminate costly repair bills down the road due to neglected equipment.

For a complete list of what inspections are required for each system, visit A1’s inspections page, or check out our comprehensive Inspections Ebook.

In between your professional inspections and maintenance, it is important that you check your fire safety systems and devices. Look for leaks, damaged areas, gauges that are not in the proper range, rust, or any other indicators that your system may not be functioning properly. Self-inspections will allow you to catch problems early, alert your fire safety company, and keep your system running to protect lives and assets. As always, some cities and states require more frequent professional inspections so be sure to check your State and Local Code.

A1 is a leading expert on the latest technology in life safety. To find out more information or to ask a question, click here or call us at 1-800-859-6198.

Nick Duke
Nick Duke
A1 Inspections Supervisor